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Abstract
This paper studies the dynamical behavior of a ring neural network with time
delays. On the basis of Lyapunov’s method, the asymptotic stability of the
equilibrium is first investigated, and the delay-dependent criteria ensuring
global stability for the ring neural network are obtained. Moreover, based
on the global Hopf bifurcation theorem for FDE, the conditions that guarantee
the global existence of periodic solutions are determined. It shows that periodic
solutions bifurcating from the trivial equilibrium can continue when the time
delay is far away from the critical value. Some examples are induced to
illustrate our results. In addition, complicated dynamics of the model are
investigated with the help of numerical simulation. The study results show
that the model exhibits period-doubling bifurcations which lead eventually to
chaos; and the chaos can also directly occur via the bifurcations from the
quasi-periodic solutions.

PACS numbers: 47.20.Ky, 84.35.+i, 05.45.−a, 87.19.La

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the past decades, there has been an increasing interest in the study of neuron systems
such as in the study of their mathematical modeling and artificial representations. Researchers
have found neural networks that have many applications in different areas such as pattern
recognition, associative memory and combinatorial optimization. Such applications heavily
depend on the dynamical behavior. Thus, the analysis of the dynamical behavior is a
necessary step for the practical design of neural networks. One of the most investigated
problems in dynamical behavior of neural networks is the global asymptotic stability for the
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equilibrium. For example, when the neural networks are adopted as parallel computation
and signal processing for solving optimization problems, it is required that there exists a
well-defined computable solution for all possible initial states. From the mathematical and
engineering viewpoint, this means that the network should have a unique and global stable
equilibrium. Thus, the global stability of neural systems is of great importance for both the
practical and theoretical purposes, and has been extensively investigated [1–13].

Indeed, neural networks inevitably incorporate time delays since the transmission of
information between the neurons is not instantaneous. Uncontrolled delays may degrade
network performance: they may interfere with information processing by making the
equilibrium unstable [14–20]. Therefore, time delays usually play a destabilizing role.
Recently, researchers have obtained some delay-dependent criteria for the local stability of
neural network. However, a little progress has been achieved for the global stability criteria
dependent of delays. Therefore, we wish to know if the time delays can be adopted as global
stabilizers rather than destabilizers.

In addition, when the connection matrix of neural networks is symmetric or antisymmetric,
the Hopfield network is always a convergent gradient network or a stable network in the absence
of delays [21]. However, when the delays are present, the above convergence and stability
properties may be lost even for very small delays, and periodic solutions may arise. Usually,
these periodic solutions only exist in a small neighborhood of the critical values. Therefore,
we wish to know whether these periodic solutions can continue for a large range of parameter
values. It is also an important mathematical subject to investigate if these nontrivial periodic
solutions exist globally.

In this paper, we take the ring neural network as the research model to illustrate the
above problems. Rings networks are of a limited biological relevance, and may be regarded
as building blocks for networks with more realistic connection topologies. Ring networks
belong to a class of cyclic feedback systems whose dynamical behavior has been investigated
in more detail. For example, Baldi and Atiya [22] proposed the following simple neural
network model:

ẋi (t) = −xi(t)/Ti + Tii−1f (xi−1(t − τii−1)), i = 1, 2, . . . , n, (1)

and investigated the effects of delays on its dynamical properties.
Campbell [23] studied the neural network model

Ciẋi(t) = −xi(t)/Ri + Fi(xi(t − τs)) + Gi(xi−1(t − τi−1)), i = 1, 2, . . . , n, (2)

and investigated the linear stability of fixed points and the existence of the co-dimension two
bifurcation.

Yuan and Campbell [24, 25] studied a network with ring construction described by

ẋi (t) = −xi(t) + αf (xi(t − τs)) + β[g(xi−1(t − τ)) + g(xi+1(t − τ))]. (3)

Huang and Wu [26] and Guo and Huang [27] studied the following ring network:

ẋi (t) = −xi(t) + f (xi(t − τ)) − [g(xi−1(t − τ)) + g(xi+1(t − τ))]. (4)

They analyzed the bifurcation and stability of nontrivial synchronous solutions from the trivial
solution, and discussed the stability of the equivariant Hopf bifurcation. From then on, many
authors have focused on the stability of fixed points, the bifurcation and existence of periodic
solutions to systems (1)–(4) with a few neurons [28–35]. However, most of the papers
investigate the local dynamics of ring neural networks, such as the local stability of fixed
points and local Hopf bifurcation. A little progress has been achieved for the global stability
criteria dependent of delays [36–38] and the global bifurcation of high dimensional neural
networks, especially when the link weights matrix of neural networks is asymmetrical.
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Figure 1. Architecture of a ring neural network with multiple time delays.

In this paper, we study a ring neural network with time delays modeled by

ẋi = −kxi(t) +
i+1∑

j=i−1

bijf (xj (t − τij )), i = 1, 2, . . . , n, (5)

where

B = {
bij

}n

i,j=1 =




β b12 0 0 · · · b1n

b21 β b23 0 · · · 0
...

. . .
. . .

...

0 0 · · · β bn−1,n

bn1 0 · · · bn,n−1 β


 , (6)

k > 0; xi(t) denotes the neuron response; f (u) = tanh(u) is the activation function of
neurons; bii = β �= 0 is the connection strength of self-feedback of neuron; bij (i �= j)

denotes the connection strengths between the two neurons, bi,i−1 �= 0, bi,i+1 �= 0, and bij = 0
for j �= i − 1, i, i + 1; index i is taken to modulo n, so that, for instance, bn,n+1 = bn1 = b01,
x0 = xn, xn+1 = x1; the delays τij is non-negative. The architecture of this model is illustrated
in figure 1.

The initial conditions associated with (5) are assumed to be of the form

xi(t) = φi(t), t ∈ [− max
1�i,j�n

τij , 0
]
, i = 1, 2, . . . , n. (7)

The aim of this paper is to analyze global dynamical behavior of (5) including the delay-
dependent criteria ensuring global stability and global existence of periodic solutions bifurcated
from the trivial equilibrium. Special attention is paid to the complicated dynamics of the model.
The paper is organized as follows. In the following section, we construct a suitable Lyapunov
function to obtain the delay-dependent criteria for the global stability of (5). In sections 3 and
4, the local and global existences of multiple periodic solutions are discussed. And the routes
to chaos are studied in section 5. Finally, several concluding remarks are drawn in section 6.
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2. Global asymptotic stability

A number of papers deal with conditions ensuring the global stability for Hopfield-type neural
network and their generalizations. According to these papers, one can obtain the delay-
independent criteria for the global stability of neural network (5).

Theorem 1. If neuronal gains and connection in (5) satisfy the inequality

−k + |β| + |bi−1,i | + |bi+1,i | < 0, for all 1 � i � n, (8)

then the zero solution is a unique and globally asymptotic stable equilibrium.
The proof of this theorem is similar to that of theorems 1 and 2 in [3]. For clarity, we give

the proof of this theorem.

Proof. From (5), it is easy to see that an arbitrary solution of (5) satisfies the following
inequalities:

−kxi(t) − σi � ẋi (t) � −kxi(t) + σi, i = 1, 2, . . . , n, (9)

where σi = ∑i+1
j=i−1 |bij |, i = 1, 2, . . . , n.

It will follow from (9) that the set � ⊂ �n defined by

� = {x | x = (x1, x2, . . . , xn); k|xi | � σi, i = 1, 2, . . . , n} (10)

is invariant with respect to the delay differential equations (5). Thus, if (5) has an equilibrium,
then such an equilibrium is a fixed point of the mapping F : � → �n defined by

F =

 2∑

j=0

1

k
b1j f (xj (t)),

3∑
j=1

1

k
b2j f (xj (t)), . . . ,

n+1∑
j=n−1

1

k
bnjf (xj (t))




T

. (11)

If (8) is satisfied, then there exists a number c ∈ (0, 1) such that the following inequality holds:

max
1�i�n

1

k
{|β| + |bi−1,i | + |bi+1,i |} � c < 1. (12)

We note from (12) that if u and v are any two points of �, then

‖F(u) − F(v)‖ =
∣∣∣∣∣∣

n∑
i=1

i+1∑
j=i−1

1

k
bij [f (uj ) − f (vj )]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

i+1∑
j=i−1

1

k
bijf

′(ξj )(uj − vj )

∣∣∣∣∣∣ �
n∑

i=1

i+1∑
j=i−1

1

k
|bij ||uj − vj |

�
n∑

i=1

i+1∑
j=i−1

1

k
|bji ||ui − vi | =

n∑
i=1




i+1∑
j=i−1

1

k
|bji |


 |ui − vi |

� c

n∑
i=1

|ui − vi | � c‖u − v‖. (13)

In deriving (13) and subsequent inequalities, we have used the facts that ξj lies between uj

and vj as well as 0 � f ′(θ) � 1 for any θ .
The mapping F is continuous and F(�) ⊂ �; it follows from (13) and c < 1 that F is

a contraction on �. By the well-known contraction mapping principle, we conclude that the
origin is a unique fixed point.
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In order to analyze the global stability of zero solutions, we consider a Lyapunov functional
V (t) defined by

V (t) =
n∑

i=1


|xi(t)| +

i+1∑
j=i−1

|bij |
∫ t

t−τij

|xj (s)| ds


 . (14)

Calculating the upper right derivative D+V of V along the solution of (5), we have

D+V =
n∑

i=1


sgn(xi(t))ẋi(t) +

i+1∑
j=i−1

|bij |[|xj (t)| − |xj (t − τij )|]



=
n∑

i=1


sgn(xi(t))


−kxi(t) +

i+1∑
j=i−1

bijf (xj (t − τij ))




+
i+1∑

j=i−1

|bij |[|xj (t)| − |xj (t − τij )|]



�
n∑

i=1


−k|xi(t)| +

i+1∑
j=i−1

|bij ||f (xj (t − τij ))| +
i+1∑

j=i−1

|bij ||xj (t)|

−
i+1∑

j=i−1

|bij ||xj (t − τij )|

 . (15)

By the differential mean-value theorem, we have

f (xj (t − τij )) = xj (t − τij )f
′(ξ),

where ξ is the value between 0 and xj (t − τij ). Note that 0 � f ′(ξ) � 1, we can obtain

|xi(t − τij )| = |f (xj (t − τij ))|
f ′(ξ)

� |f (xj (t − τij ))|.
Thus,

D+V �
n∑

i=1


−k|xi(t)| +

i+1∑
j=i−1

|bij ||xj (t − τij )| +
i+1∑

j=i−1

|bij ||xj (t)| −
i+1∑

j=i−1

|bij ||xj (t − τij )|



=
n∑

i=1


−k|xi(t)| +

i+1∑
j=i−1

|bij ||xj (t)|

.

From (6), it is easy to see that bij = 0 for j �= i − 1, i, i + 1. Then, we can rewrite the above
inequality as

D+V �
n∑

i=1

(−k|xi(t)|) +
n∑

i=1

n∑
j=1

|bij ||xj (t)| =
n∑

i=1

(−k|xi(t)|) +
n∑

j=1

n∑
i=1

|bji ||xi(t)|

=
n∑

i=1

(−k|xi(t)|) +
n∑

i=1

i+1∑
j=i−1

|bji ||xi(t)| =
n∑

i=1


−k|xi(t)| +

i+1∑
j=i−1

|bji |

 |xi(t)|

=
n∑

i=1

(−k + |bi−1,i | + |β| + |bi+1,i |)|xi(t)|.

5
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Now, by the standard Lyapunov theorem in functional differential equations, if (8) is satisfied,
then D+V < 0 and the trivial solution of (5) is global asymptotically stable. This completes
the proof.

Theorem 1 investigates the globally stable criteria independent of time delays. In this
case, delays only affect the convergence rate. However, there are cases that delays play the
key roles in discussion of whether or not a system is stable. Hence, it is needed to analyze how
time delays affect the global stability. In [36, 37], the authors studied the neurons networks
with n = 2 and obtained some delay-dependent criteria for the global stability of equilibrium.
In this paper, we will extend their results to the case with any n neurons.

First, by (5), we know that

|ẋi (t) + kxi(t)| �
i+1∑

j=i−1

|bij ||f (xj (t − τij ))| � |β| + |bi,i−1| + |bi,i+1|, i = 1, 2, . . . , .

(16)

Then, it is clear from (5) and (16) that

lim
t→∞ sup |xi(t)| � (|β| + |bi,i−1| + |bi,i+1|)/k ≡ Li. (17)

Thus, for sufficiently large T > 0, we approximately have |xi(t)| � Li when t � T .

Theorem 2. If the neuronal gains and connection weights in (5) satisfy the inequality

max
1�i�n


−k + β +

1

2

i+1∑
j=i−1,j �=i

(|bij | + |bji |) + αi


 < 0, (18)

then the zero solutions of (5) is globally asymptotically stable, where


αi = 1

2


 i+1∑

j=i−1

(|bij |τij qij ) +
i+1∑

j=i−1

(∣∣bjiτjik
/
p2

i

∣∣) +
i+1∑

s=i−1

s+1∑
j=s−1

(|bsj |bji |τsj |)



pi = f ′(Li)

qij = k +
i+1∑

s=i−1

|bjs |.

Proof. We first consider a Lyapunov function W = W(x1, x2, . . . , xn) for (5) defined by

W(x1, x2, . . . , xn) =
n∑

i=1

∫ xi (t)

0
f (ξ) dξ . (19)

It is easy to see that W is continuous and non-negative for any x1, x2, . . . , xn ∈ �, and the
upper right derivative D+W of W along the solution of (5) satisfies

D+W
∣∣
(5)

=
n∑

i=1

f (xi(t))ẋi(t)

=
n∑

i=1

f (xi(t))


−kxi(t) +

i+1∑
j=i−1

bijf (xj (t − τij ))




=
n∑

i=1

f (xi(t))


−kxi(t) +

i+1∑
j=i−1

bij [f (xj (t − τij )) − f (xj (t)) + f (xj (t))]




6
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=
n∑

i=1

f (xi(t))


−kxi(t) +

i+1∑
j=1−1

bij [f (xj (t)) + Aj ]




=
n∑

i=1

−kxi(t)f (xi(t)) +
n∑

i=1

i+1∑
j=i−1

bijf (xj (t))f (xi(t)) +
n∑

i=1

i+1∑
j=i−1

bijf (xi(t))Aj ,

(20)

where Aj = ∫ t−τij

t
f ′(xj (ξ))ẋj (ξ) dξ.

The second item of the right side of the above equation can be written as

n∑
i=1

i+1∑
j=i−1

bijf (xj (t))f (xi(t)) =
n∑

i=1


biif

2(xi(t)) +
i+1∑

j=i−1,j �=i

bij f (xj (t))f (xi(t))




�
n∑

i=1


biif

2(xi(t)) +
1

2

i+1∑
j=i−1,j �=i

|bij |[f 2(xi(t)) + f 2(xj (t))]




=
n∑

i=1


bii +

1

2

i+1∑
j=i−1,j �=i

(|bij | + |bji |)

 f 2(xi(t)).

Substituting the facts xi(t)f (xi(t)) � f 2(xi(t)) into the above two equations give

D+W
∣∣
(5)

�


−k + bii +

1

2

i+1∑
j=i−1,j �=i

(|bij | + |bji |)

 f 2(xi(t)) +

n∑
i=1

i+1∑
j=i−1

|bij ||f (xi(t)Aj )|

= 	if
2(xi(t)) +

n∑
i=1

i+1∑
j=i−1

|bij ||f (xi(t)Aj )|,

where 	i = −k + bii + 1
2

∑i+1
j=i−1,j �=i (|bij | + |bji |).

Using (5), we have

|f (xi(t))Aj | =
∣∣∣∣∣f (xi(t))

∫ t

t−τij

f ′(xj (ξ))ẋj (ξ) dξ

∣∣∣∣∣ � |f (xi(t))|
∫ t

t−τij

|ẋj (ξ)| dξ

� |f (xi(t))|
∫ t

t−τij

{
k|xj (ξ)| +

i+1∑
s=i−1

|bjs ||f (xs(ξ − τjs))|
}

dξ

� k

2

∫ t

t−τij

[
f 2(xi(t)) + x2

j (ξ)
]

dξ

+
1

2

∫ t

t−τij

i+1∑
s=i−1

|bjs |[f 2(xi(t)) + f 2(xs(ξ − τjs))] dξ

= τij

2

[
k +

i+1∑
s=i−1

|bjs |
]

f 2(xi(t))

+
1

2

∫ t

t−τij

{
kx2

j (ξ) +
i+1∑

s=i−1

|bjs |f 2(xs(ξ − τjs))

}
dξ

= τij

2
qijf

2(xi(t)) +
1

2

∫ t

t−τij

zij (ξ) dξ, (21)

7
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where qij = k +
∑i+1

s=i−1 |bjs | and zij (ξ) = kx2
j (ξ) +

∑i+1
s=i−1 |bjs |f 2(xs(ξ − τjs)).

Therefore, we have

D+W |(5) �
n∑

i=1

	if
2(xi(t)) +

1

2

n∑
i=1

i+1∑
j=i−1

{
|bij |

[
τij qij f

2(xi(t)) +
∫ t

t−τij

zij (ξ) dξ

]}
. (22)

Now, we can define a Lyapunov functional V = V (x1, x2, . . . , xn) based on W as

V = W + W̃ , (23)

where the functional W̃ is defined as

W̃ (x1, x2, . . . , xn) = 1

2

n∑
i=1

i+1∑
j=i−1

|bij |
[∫ t

t−τij

∫ t

θ

zij (ξ) dθ dξ

+ τij

i+1∑
s=i−1

|bjs |
∫ t

t−τij

f 2(xs(ξ)) dξ

]
. (24)

Calculating the upper right derivative D+W̃ of W̃ along the solution of (5), we have

D+W̃ = 1

2

n∑
i=1

i+1∑
j=i−1

|bij |
[
τij zij (t) −

∫ t

t−τij

zij (ξ) dξ

+ τij

i+1∑
s=i−1

|bjs |[f 2(xs(t)) − f 2(xs(t − τij ))]

]

� 1

2

n∑
i=1

i+1∑
j=i−1

|bij |
[
τij kf

2(xj (t))/p
2
j −

∫ t

t−τij

zij (ξ) dξ

+ τij

i+1∑
s=i−1

|bjs |f 2(xs(t))

]
. (25)

Since the activation function of neuron is f (xi) = tanh(xi), we know that

f (xi) = xi(t)f
′(ξi), (26)

where ξi is the value between 0 and xi(t).
From (17) we know that every solution of (5) is bounded, and |xi(t)| � Li holds. Then,

we have

0 < f ′(Li) � f ′(ξi) � 1, for |ξi | � Li.

Thus, by (26) and the fact 0 � f ′(s) � 1 for any s, we can easily obtain

|xi(t)| = |f (xi(t))|
f ′(ξi)

� |f (xi(t))|.

In addition, by using the inequality 0 < f ′(Li) � f ′(ξi) � 1 for |ξi | � Li , we can obtain

|xi(t)| = |f (xi(t))|
f ′(ξi)

� |f (xi(t))|
f ′(Li)

= |f (xi(t))|
pi

,

where pi ≡ f ′(Li). Therefore, we have

|f (xi(t))| � |xi(t)| � |f (xi(t))|
pi

. (27)

8
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In deriving (25) we have used the above facts. Then,

D+V �
n∑

i=1


	if

2(xi(t)) +
i+1∑

j=i−1

|bij |τij

2
qijf

2(xi(t))

+
1

2

i+1∑
j=i−1

|bij |
[

τij k

p2
j

f 2(xj (t)) + τij

i+1∑
s=i−1

|bjs |f 2(xs(t))

]


=
n∑

i=1


	i +

1

2

i+1∑
j=i−1

|bij |τij qij +
1

2

i+1∑
j=i−1

|bji |τjik

p2
i

+
1

2

i+1∑
s=i−1

s+1∑
j=s−1

|bsj ||bji |τsj


 f 2(xi(t))

=
n∑

i=1

µif
2(xi(t)), (28)

where

µi = 	i +
1

2


 i+1∑

j=i−1

(|bij |τij qij ) +
i+1∑

j=i−1

(|bji | τjik/p2
i

)
+

i+1∑
s=i−1

s+1∑
j=s−1

(|bsj ||bji |τsj )




= −k + bii +
1

2

i+1∑
j=i−1,j �=i

(|bij | + |bji |) + αi.

Therefore, if max1�i�n µi < 0, then we have D+V �
∑n

i=1 µif
2(xi(t)) < 0. It is a

consequence of (28) that V (t) � V (0). Note that xi(t) is bounded on [− max1�i,j�n τij ,∞),
and thus ẋi (t) is bounded on [− max1�i,j�n τij ,∞). This, together with xi(t) ∈ L2([0,∞)),
implies (by a theorem of Gopalsamy [39]) that limt→∞ xi(t) = 0. This completes the proof.

Corollary. If maxi{−k +bii + 1
2

∑i+1
j=i−1,j �=i (|bij |+ |bji |} < 0, then the equilibrium of network

remains globally asymptotically stable when the time delays are small enough.

In this section, we have investigated the global stability criteria depending upon all the
parameters k, bij , τij (i, j = 1, 2, . . . , n) and give the whole range of the parameter space
in which the system is stable. Condition (18) gives a single relation of k, bij , τij (i, j =
1, 2, . . . , n), which define a hypersurface in the parameter space. Generally, this hypersurface
is complicated. In order to describe this hypersurface, we can fix some parameter and consider
its intersection. Since there are cases that delay plays the key roles in discussion of whether
or not a system is stable, we consider its intersection with k = constant, bij = constant and
emphasize the effect of the time delay τij on the global stability. In a similar way, we can
also fix τij = constant and consider the effect of other parameters on the stability by using
condition (18).

To demonstrate the above statement, let us consider the neural network with delays{
ẋ(t) = − 1

2x(t) − 1
2f

(
x
(
t − 1

2τ
))

+ 1
4f (y(t − τ))

ẏ(t) = − 1
2y(t) − 1

2f
(
y
(
t − 1

2τ
)) − 2

3f (x(t − τ)).
(29)

It can be verified that the neural network model does not satisfy the assumptions of
theorem 1. The criteria given in theorem 1 fails to determine the global stability. However,

9
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Figure 2. The graph of orbit of (29) with τ = 0.6. The initial conditions are (a) (4.638, 4.58);
(b) (20, −16); (c) (−30, −12); (d) (−5, 9) for t ∈ [−τ, 0].

Figure 3. Bifurcation diagram of (29) on the Poincaré section
∑= {( τ, x)| y = 0, ẏ > 0}.

employing (18) we can choose proper time delays to stabilize the system. Using Maple
mathematical software, it is easy to compute that the parameters in (29) satisfy the conditions
of theorem 2 when τ < 0.66. Therefore, when τ = 0.6 < 0.66, the solutions converge to the
origin no matter whatever the initial dates are. The solution curves for different initial date
are illustrated in the x–y plane as shown in figure 2.

Furthermore, we examine the dependence of stability on the delays. Assume that initial
dates are φ1(s) ≡ 4.6, φ2(s) ≡ −8.58, s ∈ [−τ, 0]. Figure 3 shows the bifurcation diagram
of the system on the Poincaré section

∑= {(τ, x)| y = 0, ẏ > 0}. It can be seen that when τ

is large enough (>5.2), zero is unstable. Therefore, the global stability criteria presented by
theorem 2 is conservative. It is an open problem how to estimate the precise upper bound of
τ ∗ guaranteeing global stability.

10
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3. Local existence of periodic solutions

The global stability criteria presented above may be conservative because the use of the
Lyapunov’s method depends sharply on the inequality estimation. In this section, the local
stability analysis for system (5) is made so as to obtain some elaborating results. To simplify
the analysis and computation, τij = τ is assumed to be true. In this case, (5) can be written as

ẋi = −kxi(t) +
i+1∑

j=i−1

bijf (xj (t − τ)), i = 1, 2, . . . , n. (30)

The fact f ′(0) = 1 results in the following characteristic matrix of the linearization of (30) at
zeros:


(τ, λ) = (λ + k)I − B exp(−λτ). (31)

The associated characteristic equation of (31) takes the form

det 
(τ, λ) = det[(λ + k)I − B exp(−λ)] = 0, (32)

where I denotes the identity matrix.
To discuss the distribution of characteristic roots of (32), we put χ = exp(2π i/n) and

vm = (c0, c1χ
1m, c2χ

2m, c3χ
3m, . . . , cn−1χ

(n−1)k)T, m = 0, 1, 2, . . . , n − 1, (33)

where i is the imaginary unit, c0, c1, . . . , cn−1 are constant which are determined as follows.
Using (33) and (31), we can obtain

(
(τ, λ)vm)j = (λ + k)χ(j−1)m − e−λτ [bj,j−1cj−2χ
(j−2)m + βcj−1χ

(j−1)m + bj,j+1cjχ
jm]

=
{
λ + k − exp(−λτ)

[
bj,j−1cj−2

cj−1
χ−m + β +

bj,j+1cj

cj−1
χm

]}
cj−1χ

(j−1)m.

(34)

It is easy to see that if
b21c0

c1
= b32c1

c2
= · · · = bj,j−1cj−2

cj−1
= bj+1,j cj−1

cj

= · · · ≡ β1 (35)

and
b12c1

c0
= b23c2

c1
= · · · = bj−1,j cj−1

cj−2
= bj,j+1cj

cj−1
= · · · ≡ β2, (36)

then (34) can be written as

(
(τ, λ)vm)j = {λ + k − exp(−λτ)[β1χ
−m + β + β2χ

m]}(vm)j . (37)

If connection strengths between the neurons satisfy

bj+1,j+2bj+2,j+1 = bj+1,j bj,j+1, j = 1, 2, . . . , n, (38)

then we can from (35) and (36) obtain that

(cj )
2 = bj+1,j+2

bj,j+1
cj−1cj+1 (39)

and

cn
1 = cn

0

bn
12

α, (40)

where α = ∏n
j=1 bj,j+1.

Therefore, we can compute

β1 = b21c0
n

√
bn

12

cn
0α

, β2 = b12

c0

n

√
cn

0α

bn
12

. (41)

For simplicity, c0 can be determined as follows.

11
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(i) For n even and α > 0, or n odd, we can choose c0 = 1.
(ii) For n even and α < 0, we can choose c0 = n

√−1.

Thus, we have the following results.

Lemma 1. Assume (38) is satisfied. If cj (j = 0, 1, 2, . . . , n − 1) in (33) satisfy (39), then

det 
(τ, λ)=
∏n−1

m=0

{
λ + k − e−λτ

[
β + (β1 + β2) cos

(
2mπ

n

)
+ i(β2 − β1) sin

(
2mπ

n

)]}
,

(42)

where i is the imaginary unit. To analyze the distribution of zeros of the characteristic
equation (42), the following lemma plays an important role.

Lemma 2. Let z = Reiθ , 0 � θ < 2π , and consider

q(λ) = λ + k − z exp(−λτ). (43)

(i) If R � k, then q(λ) has no purely imaginary zero of all τ � 0.
(ii) If R > k, then there exists τj := [θ − arccos(k/R) + 2jπ ]/

√
R2 − k2 > 0 for any integer

j such that q(λ) has one and only one pair of purely imaginary zeros ±i
√

R2 − k2 at
τ = τj , and has no pair of purely imaginary zeros if 0 < τ �= τj for such j .

(iii) If R > k and τj > 0 for some j , then there exist a sufficiently small δ > 0 and a smooth
curve λ : (τj − δ, τj + δ) → C such that q(λ(τ)) = 0 for all τ ∈ (τj − δ, τj + δ),
λ(τj ) = i

√
R2 − k2 and (d/dτ) Re(λ(τ ))|τ=τj

> 0.

The proof of lemma 2 is similar to that of lemma 4.1 in [40], and thus is omitted. Applying
lemma 2 to each factor of det 
(τ, λ), we get the following result.

Lemma 3. Assume (38) holds true.

(i) If

R ≡
∣∣∣∣β + (β1 + β2) cos

(
2mπ

n

)
+ i(β2 − β1) sin

(
2mπ

n

)∣∣∣∣
1/2

� k, (44)

for all m = 0, 1, 2, . . . , n − 1, then all zeros of det 
(τ, λ) have negative real parts.
(ii) Assume there exists some m ∈ {0, 1, 2, . . . , n−1} such that R > k. Define critical values

σm,j = 1

ωm

[θ − arccos(k/R) + 2jπ ], for all j ∈ N0, (45)

where ωm = √
R2 − k2 and θ = Arg

[
β + (β1 + β2) cos

(
2mπ

n

)
+ i(β1 + β2) sin

(
2mπ

n

)]
.

Then, at and only at σm,j (j ∈ N0), (42) has purely imaginary eigenvalues ±iωm.
Moreover, for each fixed j ∈ N0, there exists δm,j > 0 and C1-mapping λm,j :
(σm,j − δm,j , σm,j + δm,j ) → C such that λm,j (σm,j ) = iωm and det[
(τ, λm,j (τ ))] = 0
for all τ ∈ (σm,j − δm,j , σm,j + δm,j ). Moreover, (d/dτ) Re λm,j (σm,j ) > 0.

Lemmas 2 and 3, together with the fact that the zero solution of (30) is uniformly asymptotically
stable if and only if all zeros of det 
(τ, λ) have negative real parts and that the zero solution of
(30) is unstable if det 
(τ, λ) has at least one zero with positive real part, lead to the following
stability results.

Theorem 3. Assume (38) is satisfied. For m ∈ {0, 1, 2, . . . , n − 1}, let R be defined by (44).

(i) If R � k for all m = 0, 1, 2, . . . , n − 1, then the trivial equilibrium of (30) is locally
stable for any τ � 0.

12
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(ii) Assume there exists m ∈ {0, 1, 2, . . . , n−1} such that R > k and β+(β1+β2) cos
(

2mπ
n

)
>

k, then for all τ � 0, the trivial equilibrium of system (30) is unstable.
(iii) Assume that R > k and β+(β1+β2) cos

(
2mπ

n

)
< k for all m. Let τ0 = minm,j {σm,j }. Then

the trivial equilibrium of (30) is locally asymptotically stable for τ ∈ [0, τ0). However,
for τ > τ0 the trivial equilibrium of system (30) is unstable.

The time delay τ0 from (45) is the critical value guaranteeing that the origin is stable when
the original values of the system are near to the origin. However, theorem 2 and condition
(18) give the global stability criteria for (5) when the original values are far away from the
origin. These criteria, which are based on the Lyapunov function method, involve complicated
inequality techniques and are usually conservative. Generally speaking, the maximum τ that
satisfies (18) is obviously less than the time delay τ0 obtained from theorem 3.

To compare the two delays, let us consider the system with bi,i−1 = bi,i+1 = b = −0.1,
τij = τ and k = 1. It is easy to see that the system satisfies both conditions (18) and item (iii)
in theorem 3. In this case, we can obtain from (18) that the origin of the system is globally
stable when 0 < τ < 0.033. Moreover, from (45) we can also obtain the system with four
neurons is locally stable when 0 � τ0 < 5.9. The comparison shows that τ satisfying (18) is
obviously less than that from (45).

4. Global existence of periodic solutions

From section 3, we can see that system (30) admits a Hopf bifurcation when τ crosses critical
values σm,j , and periodic solutions can bifurcate from the trivial equilibrium. Usually, these
periodic solutions only exist in a small neighborhood of the critical values. To extend the local
Hopf bifurcation for large delay values, we investigate the global existence of these nontrivial
periodic solutions by using a global Hopf bifurcation result [40].

In this section, we make the following assumption.
(H). The origin is the unique equilibrium of system (30).

Theorem 4. Assume that (38) holds true. If there exists some m ∈ {0, 1, 2, . . . , n − 1} such
that R > k, then there exist critical time delays σm,j (j ∈ N0) such that the Hopf bifurcation
occur at these critical time delays. Moreover, if the parameters of (30) satisfy the conditions

max
1�i�n


−k + β +

1

2

i+1∑
j=i−1,j �=i

(|bij | + |bji |)

 < 0, (46)

then for given m ∈ {0, 1, 2, . . . , n − 1} (30) has at least j + 1 periodic solutions for each
τ > σm,j (j � 1), where R and σm,j are defined in lemma 3.

The proof of theorem 4 can be found in the appendix.
To demonstrate the above statement, let us consider the neural network with delays

modeled by {
ẋ(t) = −x(t) − f (x(t − τ)) − 1.2f (y(t − τ))

ẏ(t) = −y(t) − f (y(t − τ)) + 1.5f (x(t − τ)).
(47)

It is easy to compute two series of critical values τ0 = σ0,0 ≈ 0.955, σ0,1 ≈ 5.638,
σ0,2 ≈ 10.32, and σ1,0 ≈ 2.342, σ1,1 ≈ 7.025, σ1,2 ≈ 11.708, . . . . By theorem 3, the trivial
equilibrium is stable for τ ∈ [0, τ0) and a periodic solution bifurcates from the equilibrium as
τ crosses τ0 to the right, as shown in figure 4. Generally speaking, these periodic solutions

13
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Figure 4. The solution of (30) near the critical time delay τ0 = 0.955.

Figure 5. The periodic solutions still exist when τ is far away from τ0.

only exist in a small neighborhood of the critical value. However, figure 5 shows that the
periodic solutions still exist when the delay τ is far away from the critical values.

Figure 6 illustrates periodic solutions for (30) when τ is near to τ0. The curves in
figure 6(a) denote the solutions orbits in the x–y plane at critical delays σ0,0, σ0,1, σ0,2, σ0,3,
σ0,4 and σ0,5, respectively; while figure 6(b) shows the periodic solution on the Poincaré
section defined by

∑= {(τ, x)| y = 0, ẏ > 0}, where each of the solid points denotes a
periodic solution. It can be seen that when τ ∈ (σ0,1, σ0,2) there exist two periodic solutions;
while there are three periodic solutions for τ ∈ (σ0,2, σ0,3) and four periodic solutions for
τ ∈ (σ0,3, σ0,4). These figures indicate that the system has at least j + 1 periodic solutions
when τ > σ0,j � σ0,1.

5. Routes to chaos

For the single-directed ring neural network [23] or the ring neural network with symmetrical
weight matrix [24, 25, 27], it is very difficult to exhibit the much more complicated dynamics
when the activation function is monotonic behavior because the structure of the network is

14
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Figure 6. Global existence of periodic solutions for (30).

simple. However, system (5) describes a ring network with asymmetrical weighted matrix,
and can exhibit complicated nonlinear dynamical behavior. In this section, the complicated
dynamics will reveal numerically with the help of the package XPP [41].

Example 1. Consider the neural network with time delay


ẋ(t) = −x(t) + 1.19f (x(t − τ)) − 1.6f (y(t − τ)) − 0.01f (z(t − τ))

ẏ(t) = −y(t) + 1.19f (y(t − τ)) + 1.2f (x(t − τ)) + 0.9f (z(t − τ))

ż(t) = −z(t) + 1.19f (z(t − τ)) − 0.5f (x(t − τ)) + 2.25f (y(t − τ)).

(48)

In this example, τ is taken as a control parameter. In simplicity, the projection of solution
curves onto the x–y plane is considered. Figure 7(a) shows coexisting periodic 1 solution
when τ = 0.7, in this case there exist two separate periodic orbits starting from different initial
conditions. When τ = 0.85 and τ = 0.87, both periodic 2 and periodic 4 solutions appear
as shown in figures 7(b) and (c), respectively. When τ is slightly increased to τ = 0.98,
two coexisting separate chaotic attractors with different initial conditions are observed in
figure 7(d). Note that there are two separate single-scroll-like attractors in the figure, although
it looks like a whole one. As further increase of time delay, two separate single-scroll-like
attractors merge to a double-scroll-like one, such an attractor is displayed in figure 7(e) with
τ = 1. Obviously, it is the sequence of period-doubling bifurcations that leads to chaos.

To identify the routes to chaos, the Poincaré map is used. A Poincaré section is defined
as a projection of solutions of system (5). The points in the Poincaré section depend on the
behavior of the system. If the final motion of the system is periodic, there is only one point
in the Poincaré section. For a period-n (n = 2, 3, . . . ) motion, n points will appear in the
Poincaré section. For non-periodic motions such as a chaotic response, the number of points
becomes infinite. An irregular pattern in the Poincaré section indicates the existence of a
strange attractor.

Figure 8 illustrates the detailed bifurcation diagram as a function of the time delay τ by
using the Poincaré section techniques which are defined as

∑ = {(τ, x): (y = 0, ẏ > 0)}. It
is a scenario of dynamics of system (5) with time delay increasing for the different original
conditions. It shows that there exist two separated period-doubling bifurcation processes. The
two period-doubling processes will have wrapping regions for the larger τ . In these wrapping
regions, (48) has more complicated chaotic attractors illustrated in figures 9(a) and (b).
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(a) (b)

(c)

(e)

(d )

Figure 7. Periodic and chaotic solutions of (48) at sampled values of the time delay τ . Parts
(a)–(c) show that the system has two coexisting period-1, period-2 and period-4 solutions. Part (d)

shows two coexisting separated chaotic attractors for the different initial conditions. Obviously, it
is the sequence of period-doubling bifurcations that leads to chaos.

Example 2. Consider the ring neural network with time delay


ẋ(t) = −x(t) + 1.19f (x(t − 0.6)) − 1.6f (y(t − 0.6)) − 0.01f (v(t − 2))

ẏ(t) = −y(t) + 1.19f (y(t − 0.6)) + 1.2f (x(t − 0.3)) + 0.9f (z(t − 1))

ż(t) = −z(t) + 1.19f (z(t − 1)) + 0.5f (y(t − 0.6)) − 0.5f (v(t − 2))

v̇(t) = −v(t) + 1.19f (v(t − 2)) + A41f (x(t − 0.3)) + 0.425f (z(t − 1)),

(49)
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Figure 8. Bifurcation diagram of (48) on the Poincaré section for different initial conditions.

Figure 9. Strange chaotic attractors on the Poincaré section
∑ = {(x, z): (y(t) = 0, ẏ(t) > 0)}.

where A41 is taken as a control parameter and other parameters are fixed. The phase-plane
and Poincaré section plots are used to locate the periodic and chaotic solutions.

When A41 = −0.4, the solution curve in the z–v phase-plane is first plotted as shown in
figure 10(a), at which the motions fill the surface of a torus. And a discrete cluster of points in
the Poincaré section

∑ = {[z(t − 1), z(t)]: [v(t) = 0, v̇(t) > 0]} closed up to form a loop as
shown in figure 10(b). Such a motion is called quasi-periodic motion, as the ratio of the two
frequencies becomes an irrational number. When the parameter A41 is slightly increased to
A41 = −0.1, a stable period-3 solution is also observed and three points occur in the Poincaré
section which is shown in figures 10(c) and (d). It is well known that the periodic-3 solutions
indicate the chaos. When A41 is increased further, a strong attractor occurs and the closed
curve in the Poincaré section breaks up into irregular patterns, indicating the formation of
chaotic attractors, see figures 10(e) and (f ). This phenomenon indicates that the chaos can
directly occur through the bifurcations from the quasi-periodic solutions.
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Figure 10. Phase-plane and Poincaré section plots exhibiting the process from quasi-periodic
motions to chaos. (a) and (b): quasi-periodic attractor; (c) and (d): periodic-3 attractor; (e) and
(f ): chaotic attractor.

The above numerical results show that there exist two routes to chaos in network (5)
for different network structures and parameters. One is from the period-doubling sequences
to chaos, and the other is from the quasi-periodic solutions to chaos. For the latter case,
the occurrence of chaos can be roughly considered as the torus breaking or quasi-periodic
solutions going into the phase-locked wrapping regions with different frequency.
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6. Conclusions

In this paper, we have studied the dynamics of a ring neural network with delays in detail.
First, the delay-independent and delay-dependent criteria for global asymptotic stability are
investigated based on the approach of the Lyapunov function. Our work generalizes that
reported in [36, 37], and shows that when the delay-independent criteria for the global
stability are not satisfied, we can choose proper time delays to globally stabilize the system. It
indicates that the delay-dependent global stability criteria are less conservative and restrictive
than the delay-independent criteria. In the mean time, we also note that if the ring neural
network starts with a stable equilibrium, but then becomes unstable due to delays, it will
likely be destabilized by means of a Hopf bifurcation leading to periodic solutions. Generally
speaking, these obtained bifurcating periodic solutions only exist when the time delay is in a
small neighborhood of the critical value. In this paper, we extend the scope of local periodic
solutions, and obtain the existence of periodic solutions for time delay far away from the
local Hopf bifurcation values. It shows that the local Hopf bifurcation implies the global
Hopf bifurcation as the time delay is large. In addition, complicated dynamical behavior of
(5) has been investigated with the help of numerical simulation. For the different networks,
it may have two routes to chaos, such as the sequence of period-doubling bifurcations and
the bifurcation from quasi-periodic solutions. The results show that the ring neural network
exhibits the complicated dynamics from order to chaos or vice versa. This shall be the
motivation of some further studies of the dynamics of the ring neural networks.
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Appendix

To prove theorem 4, we fist give some definitions and lemmas.
Let X = C([−τ, 0],�n) be the Banach space of bounded continuous mapping from

[−τ, 0] into �n equipped with the supremum norm. For z ∈ X, t ∈ �, define zt (s) = z(t + s)

for s ∈ �. For simplification of notations, we rewrite (30) as the following functional
differential equation:

ż(t) = F(zt , τ, T ), (A.1)

where T is the periodic of periodic solution. We introduce some notations:
N = {(ẑ, τ, T ): ẑ is a fixed point}, � = Cl{(z, τ, T ): z is a T -periodic solution} ⊂ X ×

�+ × �+,


(ẑ, τ, T ) (λ(τ)) =
∏n−1

m=0

{
λ + k − exp(−λτ)

[
β + (β1 + β2) cos

(
2mπ

n

)

+ i(β2 − β1) sin

(
2mπ

n

)]}

and λ(ẑ, τ, T ) denotes the connected component of (ẑ, τ, T ) in �.

19



J. Phys. A: Math. Theor. 41 (2008) 035102 X Xu

Consider (A.1) parameterized by two real numbers (τ, T ) ∈ �+ × �+, where �+ =
(0,∞) and F : X × �+ × �+ → �n is completely continuous. Identifying the subspace of X
consisting of all constant mappings with �n, we obtain a mapping F̂ = F |�n×�+×�+ : �n ×
�+ × �+ → �n. Assume

(B1) F̂ is twice continuously differentiable.
(B2) At each stationary solution (ẑ0, τ0, T0), the derivative of F̂ (z, τ, T ) with respect to the

first variable z, evaluated at (ẑ0, τ0, T0), is an isomorphism of �n.
(B3) F(ϕ, τ, T ) is differentiable with respect to ϕ, and the n × n complex matrix function


(ẑ(τ,T ),τ,T )(λ) is continuous in (τ, T , λ) ∈ Bε0(τ0, T0) × C.
(B4) There exist ε > 0, δ > 0 such that on τ ∈ [τ0 − δ, τ0 + δ] × ∂�ε,T0 , 
(ẑ(τ,T ),τ,T )(u +

is2π/T ) = 0 if and only if τ = τ0, u = 0 and T = T0, where �ε,T0 = {(u, T ): 0 <

u < ε, |T − T0| < ε}.
Lemma 4 [40]. Assume that (ẑ0, τ0, T0) is an isolated center satisfying the hypotheses (B1–
B4). Denote by λ(ẑ0,τ0,T0) the connected component of (ẑ0, τ0, T0) in �. Then

(i) λ(ẑ0,τ0,T0) is unbounded, or
(ii) λ(ẑ0,τ0,T0) is bounded, λ(ẑ0,τ0,T0) ∩ N is finite and∑

(ẑ,τ,T )∈λ(ẑ0 ,τ0 ,T0)∩N

�m(ẑ, τ, T ) = 0,

for all s = 1, 2, . . ., where �s(ẑ, τ, T ) is the sth crossing number of (ẑ, τ, T ) if
s ∈ J (ẑ, τ, T ), or is zero if otherwise, where J (ẑ, τ, T ) denotes the set of all positive
integers s such that is 2π/T is a characteristic value of (ẑ, τ, T ).

Lemma 5. All the periodic nontrivial solutions of (30) are uniformly bounded if the connection
strengths between neurons are bounded.

Proof. Let (x1(t), x2(t), . . . , xn(t)) be a non-constant periodic solution of (30).
If Mi = max{xi(t)} = xi

(
tMi

)
and Ni = min{xi(t)} = xi

(
tNi
)
, respectively, be the

maximum and minimum values of the periodic function xi(t), then we have

kMi =
i+1∑

j=i−1

bijf
(
xj

(
tMi − τ

))
, kNi =

i+1∑
j=i−1

bijf
(
xj

(
tNi − τ

))
, i = 1, 2, . . . , n.

(A.2)

Thus, (A.2) gives k|Mi | � |β| + |bi,i+1| + |bi,i−1|, k|Ni | � |β| + |bi,i+1| + |bi,i−1|. This
completes the proof.

Lemma 6. If parameters satisfy the inequality

max
1�i�n


−k + β +

1

2

i+1∑
j=i−1,j �=i

(|bij | + |bji |)

 < 0, (A.3)

then (30) has no periodic solution of period τ .

Proof. If (x1(t), x2(t), . . . , xn(t)) is a non-constant periodic solution of periodic τ , then it is
a periodic solution to the following ordinary equation:

ẋi = −kxi(t) +
i+1∑

j=i−1

bijf (xj (t)), i = 1, 2, . . . , n. (A.4)
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For this system of ordinary differential equations, we consider the following Lyapunov
function:

V (x1, x2, . . . , xn) =
n∑

i=1

∫ xi (t)

0
f (ξ) dξ . (A.5)

The derivative V along the solution of (A.4) satisfies

V̇ =
n∑

i=1

f (xi(t))ẋi(t) =
n∑

i=1

f (xi(t))


−kxi(t) + biif (xi(t)) +

i+1∑
j=i−1,j �=i

bij f (xj (t))




�
n∑

i=1


−kf 2(xi(t)) + biif

2(xi(t)) +
1

2

i+1∑
j=i−1,j �=i

(|bij | + |bji |)f 2(xi(t))




=
n∑

i=1


−k + β +

1

2

i+1∑
j=i−1,j �=i

(|bij | + |bji |)

 f 2(xi(t)). (A.6)

By the well-known invariance principle, when inequality (A.3) is satisfied, each solution of
(A.4) is convergent to equilibrium. Consequently, (A.4) (and thus (30)) has no non-constant
periodic solutions.

The proof of theorem 4.
First, note that

F(zt , τ, T ) :=

−kx1(t) +

2∑
j=0

b1j f (xj (t − τ)), . . . ,−kxn(t) +
n+1∑

j=n−1

bnjf (xj (t − τ))




T

satisfies the hypotheses (B1–B4) with (ẑ, τ, T ) = (0, τ̄j , 2π/ω0) and 
(0,τ̄j ,2π/ωm)(λ) = 0.
It can be verified that (0, σm,j , 2π/ωm) is an isolated center. Moreover, putting

H±(0, σm,j , 2π/ωm)(η, T ) = 
(0, σm,j ± ε, T )(η + i2π/T ).

We have the crossing number

�(0, σm,j , 2π/ωm)

= degB(H−(0, σm,j , 2π/ωm)(η, T ),�ε) − degB(H +(0, σm,j , 2π/ωm)(η, T ),�ε)

= − 1.

By assumption (H), origin is the only fixed point of (30), we have∑
(ẑ,τ,T )∈λ(0,σm,j ,2π/ωm)

�(ẑ, τ, T ) < 0,

where (ẑ, τ, T ) takes the form of (0, σm,j , 2π/ωm), j = 0, 1, 2, . . .. It follows from lemma 4
that the connected component λ(0, σm,j , 2π/ωm) through (0, σm,j , 2π/ωm) in � is non-empty.
And hence, λ(0, σm,j , 2π/ωm) is unbounded. From the definition of τm,j in lemma 3, we have
2π/ωm < σm,j for j � 1. And the periodic T = 2π/ωm is bounded when j � 1. Clearly,
lemma 6 shows that (30) with τ = 0 has no nontrivial periodic solution. Hence, the projection
of λ(0, σm,j , 2π/ωm) onto τ -space must be an interval [τ̃ , +∞) with 0 < τ̃ � σm,j (j � 1).
This shows that for each τ > σm,j (j � 1), (30) has a non-constant periodic solution on
λ(0, σm,j , 2π/ωm). Therefore, if τ > σm,j (j � 1), (30) has at least j + 1 periodic solutions.
This completes the proof of theorem 4.
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